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The effect of a temperature-dependent solute diffusion coefficient on a model of uni-
directional solidification of a binary melt with a quasi-equilibrium mushy (two-phase)
zone is studied. The Soret effect (thermodiffusion) is also included in the analysis.
The concentration field in the liquid, solid and mushy phases, as well as the rate
of solidification and mushy zone thickness, are found analytically as functions of all
thermophysical parameters. The role of the nonlinear solute transport is detailed in the
analysis. On the basis of analytical solutions, the regime of solidification with a quasi-
equilibrium mushy zone is replaced by an equivalent discontinuity surface (frontal)
regime with new boundary conditions.

1. Introduction
Solidification processes play a very important role in metallurgy and in many

cases completely determine the physical and mechanical properties of solid alloys.
Sometimes, it is possible to describe crystallization in a standard way by means of
the well-known Stefan thermodiffusion model with a planar front (the boundary of
phase transition). However, often the plane front of solidification is broken by the
constitutional supercooling arising under certain circumstances ahead of the front
(Ivantsov 1951). For this reason, some parts of the front grow in more favourable
conditions than others, i.e. the front becomes morphologically unstable (Mullins &
Sekerka 1964). The evolution of such an instability leads to the appearance of a
metastable zone between solid and liquid phases, which is called the two-phase zone
or mushy region. Thus, after a lapse of time, solidification is divided into three parts:
solid, mushy and liquid phases. A theoretical description of such a scenario of binary
melt crystallization was suggested by Hills, Loper & Roberts (1983), Fowler (1985)
and Borisov (1987). At present, this nonlinear model is solved for different cases
without considering the Soret effect and temperature-dependent diffusion. Attempts
at obtaining approximate solutions were made by a number of investigators (Hills
et al. 1983; Fowler 1985; Worster 1986; Borisov 1987; Buyevich, Alexandrov &
Mansurov 2001). However, exact analytical solutions were obtained by Alexandrov
(2001), who analysed the solidification of a binary melt with a mushy region, in which
heterogeneous inclusions of the new phase grow in such a manner that this region
is almost totally desupercooled. We shall consider this model but include also the
Soret effect and temperature-dependent diffusion. Huppert & Worster (1985) outline
six different regimes that arise depending on whether the initial liquid concentration
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is less than, equal to, or greater than the eutectic composition, and whether the liquid
is cooled from an upper or a lower horizontal boundary. Following the model by
Worster (1986), we shall investigate solidification in the absence of gravity, though
this situation may almost be realized in the laboratory (Huppert & Worster 1985)
by cooling, from below, a liquid whose initial concentration is less than the eutectic
value, since then the temperature and concentration fields are individually statically
stable to convective turnover.

The diffusion flux determines the solute gradient in the liquid at a given growth rate
and, consequently, determines the value of the constitutional supercooling. However,
since the liquid temperature gradient is often high, thermodiffusion (Soret effect)
should be considered as well. In many cases, thermodiffusion may have a strong
dependence on composition. In particular, for dilute solutions, the thermodiffusion
flux is proportional to the mean concentration (see, for example, Van Vaerenbergh
et al. 1998). Our interest here is therefore be analyse a dependence diffusion flux of
the form:

J = −D∇σ − DT (β0 + β1σ )∇θ, (1)

where σ and θ are the concentration and temperature fields, D is the diffusion
coefficient, DT is the thermodiffusion coefficient and β0 and β1 are constants. We are
primary interested in two cases, namely Model I for which β0 = σ∞, where σ∞ is the
initial concentration and β1 = 0, and Model II for which β0 = 0 and β1 = 1. The first
case, discussed by Van Vaerenbergh et al. (1995), corresponds to small variations in the
concentration field. However, for dilute solutions and for all cases where the transport
is of thermophoretic form (each particle of solute being driving by a thermal ‘force’
without interaction between them) and so may exhibit unusual dynamics, Model II
is more correct (Van Vaerenbergh, Coriell & McFadden 2001).

The Dufour effect, where concentration gradients change temperature, reciprocal
to the Soret effect where temperature gradients change concentration, is also known
from irreversible thermodynamics. However, in binary liquid mixtures the Dufour
effect is negligible (this effect is most important in gas mixtures; see, among others,
Hollinger & Lücke 1995).

Generally speaking, the diffusion coefficient is not a constant with temperature. Let
us write this function in a linear form (Bruson & Gerl 1980; Van Vaerenbergh et al.
2001):

D(θ) = D0 +
∂D

∂θ
(θ − θ0), (2)

where D0 is the diffusion coefficient at the melting temperature θ0 and ∂D/∂θ is the
temperature coefficient. Our theory is devoted to exact analytical solutions of the
solidification with a mushy zone on the basis of nonlinear solute transport (1), (2).

2. The model
Let us consider a unidirectional process of binary melt solidification along axis ξ

(the constant rate us of solidification and the mushy zone thickness δ will be regarded
as established). In other words, solidification proceeds far from the walls of an ingot
mould and their influence on the process is not significant. Therefore, it is reasonable
to assume that temperature gradients in the solid gs and liquid gl phases are fixed.

The regions ξ <usτ and ξ >usτ + δ are filled with the solid and liquid (melt)
phases, respectively, and the mushy zone is placed between boundaries ξ = usτ and
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ξ = usτ + δ. The projection of the diffusion flux (1) on the direction ξ is

J = −Dm(θ)
∂σ

∂ξ
− DT m(β0 + β1σ )

∂θ

∂ξ
.

Here Dm and DT m are the diffusion and thermodiffusion coefficients in the mushy
zone. A set of equations describing heat and mass transfer in the mushy zone and
adjoining phases has the form

∂

∂τ
[(1 − ϕ)σ ] = − ∂

∂ξ
J − kσ

∂ϕ

∂τ
, usτ < ξ < usτ + δ, (3)

∂

∂τ
[ρCθ] =

∂

∂ξ

(
λ
∂θ

∂ξ

)
+ LV

∂ϕ

∂τ
, usτ < ξ < usτ + δ, (4)

θ = θ0 − mσ, usτ < ξ <usτ + δ, (5)

∂σl

∂τ
= − ∂

∂ξ
Jl, Jl = −D(θl)

∂σl

∂ξ
− DT (β0 + β1σl)

∂θl

∂ξ
, ξ > usτ + δ,

∂θl

∂ξ
= gl, ξ > usτ + δ,

∂θs

∂ξ
= gs, ξ < usτ. (6)

Here σ and σl are the concentrations of impurity in the mushy and liquid phases
(neglecting diffusion in the solid), θ, θl and θs are the temperatures in the mushy, melt
and solid phases, ϕ is the bulk fraction of the solid phase in the mush, D and DT

are the diffusion and thermodiffusion coefficients in the liquid, m is the liquidus slope
determined from the phase diagram, k is the equilibrium partition coefficient, ρ is the
density, C is the thermal capacity, λ is the thermal conductivity and LV is the latent
heat of solidification per unit mass.

We assume that the molecular transport processes are given by volume-fraction-
weighted averages

λ = λl(1 − ϕ) + λsϕ, Dm = D(1 − ϕ), DT m = DT (1 − ϕ), (7)

having ignored chemical diffusion in the solid phase (λl and λs are the thermal
conductivities in the liquid and solid phases). These expressions are only approximate,
since such transport coefficients should generally depend upon the internal morpho-
logy of the two-phase medium (Batchelor 1974), but these expression have been found
to lead to good agreement with the results of laboratory experiments on stagnant
mushy layers (Huppert & Worster 1985; Worster 1986; Kerr et al. 1990a, b, c). We
emphasize that the linear form of the function λ= λ(ϕ) is not essential for the theory
under consideration. We use only the continuity expression λ|ξ=usτ+δ = λl .

Further, we neglect the left-hand side of equation (4), because the relaxation time
τa = l2/a of temperature fields is essentially less then the relaxation time τD = l2/Dl

of the diffusion field, i.e. τa/τD ∼ 10−3−10−4 (l is a characteristic length scale, and a

is the temperature diffusivity coefficient).
We also suppose that the impurity concentration in the melt far from the

mush/liquid boundary is known:

σl −→ σ∞, ξ −→ ∞. (8)

The following conditions imposed at the boundaries usτ and usτ + δ hold:

λsgs − λ
∂θ

∂ξ
= LV (1 − ϕ)us, (1 − k)(1 − ϕ)σus = J, ξ = usτ, (9)
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λ
∂θ

∂ξ
= λlgl, ϕ = 0, σ = σl, J = Jl, ξ = usτ + δ, (10)

θ = θs, ξ = usτ, θ = θl, ξ = usτ + δ. (11)

The value of ϕ∗ = ϕ|ξ=usτ is not a given parameter.
The next section is concerned with analytical solutions of the model (1)–(11)

describing thermodiffusion and temperature-dependent diffusivity in the liquid phase
during directional solidification of a dilute binary alloy.

3. Exact analytical solutions
We use the frame of reference associated with the solid/mush interface (y = ξ − usτ ).

In this case, the solidification process is stationary. Let us introduce the following
dimensionless variables and parameters:

x =
us

D0

y =
us

D0

(ξ − usτ ), c =
σ

σ∞
, cl =

σl

σ∞
, N =

λsmσ∞

LV D0

,

Λ(ϕ) =
λ(ϕ)

λs

, ε =
δus

D0

, Gs =
gsD0

mσ∞us

, Gl =
glD0

mσ∞us

,

where x, c and ε are the dimensionless spatial coordinate, solute concentration and
mushy zone thickness, respectively. Equation (5) implies that ∂θ/∂ξ = −m∂σ/∂ξ

throughout the mushy zone. Taking this into account, let us write equations (3) and
(4) supplemented by boundary conditions (9) and (10) in dimensionless form:

d

dx

[
(1 − ϕ)c + (1 − ϕ)(a − bc)

dc

dx

]
+ kc

dϕ

dx
= 0, 0 < x < ε, (12)

N
d

dx

[
Λ(ϕ)

dc

dx

]
+

dϕ

dx
= 0, 0 < x < ε, (13)

Gs + Λ(ϕ∗)
dc

dx
=

1 − ϕ∗

N
, (1 − k)c = −(a − bc)

dc

dx
, x = 0, (14)

Gl +
dc

dx
= 0, c = cl,

dc

dx
=

dcl

dx
, x = ε, (15)

where a = 1 − mβ0DT /D0 and b = (∂D/∂θ + β1DT )mσ∞/D0.
Taking into account boundary conditions (8)–(11), solutions of equations (6) can

be written as

θs = θ0 − mσ∞c|x=0 +
D0

us

gsx, θl = θ0 − mσ∞c|x=ε +
D0

us

gl(x − ε),

cl = 1 + c1

[
1 + (Gl(x − ε) − c|x=ε)

∂D

∂θ
mσ∞/D0

]−p

, p =
D0 + β1mσ∞DT Gl

mσ∞(∂D/∂θ)Gl

.




(16)

Here c|x=0 and c|x=ε denote the dimensionless concentrations at the boundaries x = 0
and x = ε, and c1 is a constant of integration; all of them are determined below.

Integration of equation (13) gives

dc

dx
= −ϕ(x) + c2

NΛ(ϕ)
, (17)
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where c2 is a constant. Substituting dc/dx from (17) in (12) and multiplying the result
by dx/dϕ, we arrive at the following equation:

d

dϕ

[
(1 − ϕ)c − (1 − ϕ)(a − bc)

ϕ + c2

NΛ(ϕ)

]
+ kc = 0.

Now, it is easy to see that the dimensionless concentration c depends only on ϕ (a
similar result was obtained earlier for linear diffusion transport by Alexandrov 2001).
Integration of the above equation gives

c(ϕ) = F (ϕ)(c|x=ε + J (ϕ)), (18)

where

F (ϕ) =
λs

λl

Λ(ϕ)

(
1 − 1

q
ϕ

)α

(1 − ϕ)β, J (ϕ) = −
∫ ϕ

0

1

F (x)

h1(x)

h2(x)
dx,

h1(x) = a
x + c2

NΛ(x)
− a(1 − x)

d

dx

(
x + c2

NΛ(x)

)
, h2(x) = (1 − x)

(
1 + b

x + c2

NΛ(x)

)
,

r = −
(

1 − λl

λs

)
N − b, q =

1

r

(
λl

λs

N + bc2

)
,

α =
γ1 + γ2q

r(1 − q)
− 1, β = − γ1 + γ2

r(1 − q)
,

γ1 = (k − 1)
λl

λs

N − bc2, γ2 = (k − 1)

(
1 − λl

λs

)
N − b.

Further, combining expressions (14), (15) and (17), we have

us =
λsgs − λlgl

LV

, c2 =
λlgl

λsgs − λlgl

. (19)

It is easily seen that the rate of solidification is the same as for the planar front. Thus,
the nonlinear solute transport under consideration does not produce any changes in
the rate of solidification.

The value of c1 is found from equations (15):

c1 =
Gl

1 + β1mσ∞DT Gl/D0

[
1 − c|x=ε

∂D

∂θ
mσ∞/D0

]p1

, p1 =
1 + bGl

mσ∞(∂D/∂θ)Gl/D0

.

Combining conditions (15) and (16), we find the impurity concentration at the
boundary x = ε:

c|x=ε =
1 + (1 + β1mσ∞DT /D0) Gl

1 + bGl

. (20)

To find the bulk fraction ϕ∗ at the left boundary x = 0, we substitute dc/dx from (17)
and c(ϕ∗) from (18) in the second boundary condition (14). This gives the following
algebraic equation for ϕ∗:

F (ϕ∗)(c|x=ε + J (ϕ∗)) =
a

b + (1 − k)NΛ(ϕ∗)/(ϕ∗ + c2)
. (21)

It is easy to see that the bulk fraction ϕ∗ is completely determined by physical and
operating parameters of the process.

Differentiation of c(ϕ) with respect to x gives

dϕ

dx
=

dc/dx

dc/dϕ
.
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Figure 1. The dimensional mushy zone thickness δ as a function of gs and gl for the Fe–Ni
alloy, k = 0.68, m= 2.65 ◦C(wt%)−1, LV = 3398.5 cal cm−3, D0 = 5 × 10−5 cm2 s−1, λl = 0.1 cal
(s cm ◦C)−1, λs = 0.177 cal (s cm ◦C)−1, σ∞ = 0.3, DT =10−6 cm2 (s ◦C)−1, ∂D/∂θ = 10−5 cm2

(s ◦C)−1. Model II (solid curves) is compared with the classical case (dash-dot curves).

Substituting dc/dx and dc/dϕ from equations (17) and (18), and taking into
consideration that ϕ = ϕ∗ at x = 0, we obtain x(ϕ) in the form

x(ϕ) =

∫ ϕ∗

ϕ

d

dz
[F (z)(c|x=ε + J (z))]

NΛ(z)

z + c2

dz. (22)

If this function is known, it is not difficult to plot the inverse function ϕ(x). Substituting
ϕ = 0 at x = ε into expression (22), we find the dimensional two-phase zone thickness
δ = D0ε/us:

δ =
D0

us

∫ ϕ∗

0

d

dz
[F (z)(c|x=ε + J (z))]

NΛ(z)

z + c2

dz. (23)

Figure 1 illustrates the mushy zone thickness δ(gs) for different values of gl (to
demonstrate the behaviour of curves clearly, we used overestimated values of DT

and ∂D/∂θ; the qualitative behaviour corresponds to typical values used in figures 2
and 3). It is clearly seen that the two-phase zone thickness attains its maximum
at a certain temperature gradient (similar behaviour was observed previously by
Alexandrov (2001) for the linear form of the diffusion flux). As shown in figure 1, the
mushy zone thickness in the classical case (Alexandrov 2001) is less than in the case
under study for some values of gs . Increasing the temperature gradient in the solid
changes this behaviour. This appears to be caused by the following processes. The
temperature near boundary x = 0 is less than the melting temperature of the pure
melt (see (5)), so increasing ∂D/∂θ decreases the diffusion coefficient (see (2)) and,
consequently, decreases the impurity output from the phase transition boundary x =0.
Therefore, the concentration of impurity in the classical case is less (greater) than
this value in the case under study at x = 0 (x = ε). This assists supercooling near the
mush/liquid boundary and increasing the mushy zone thickness (see regions in figure 1
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Figure 2. The bulk fraction of the solid phase at the solid/mush interface as a function of
the temperature coefficient ∂D/∂θ for the Fe–Ni alloy, gl =30 ◦Ccm−1 and gs =100 ◦Ccm−1.
Solid, dashed and dash-dot curves correspond to DT = −12.1 × 10−8 cm2 (s ◦C)−1, DT = 12.1 ×
10−8 cm2 (s ◦C)−1 and DT =0, respectively.
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Figure 3. The concentration of impurity σ (scale of values on the left, solid curve) and
temperature θ (scale of values on the right, dashed curve) as functions of dimensionless
spatial coordinate x for the Fe–Ni alloy, DT = −12.1 × 10−8 cm2 (s ◦C)−1 (Kubicek & Mrazek
2001), ∂D/∂θ = 5 × 10−7 cm2 (s ◦C)−1 (typical value for metallic alloys), gl = 30 ◦Ccm−1 and
gs = 100 ◦Ccm−1 (Model II). σs is the impurity concentration in the solid obtained in
accordance with the boundary condition σs = kσ at x =0.

on the right of the intersection points of solid and dashed-dot curves). However, the
impurity transported from the solid/mush interface at small temperature gradients
gs is weakly cooled. In other words, the mushy zone thickness is determined in the
first place by supercooling near boundary x = 0. Since the impurity concentration in
the case of Model II is greater than in the classical case, the mushy zone width is
also greater (see regions in figure 1 on the left of the intersection points of solid and
dashed-dot curves).

Figure 2 demonstrates the bulk fraction of the solid as a function of nonlinear
transport coefficients ∂D/∂θ and DT . Our calculations show that changes (distances
between the dash-dot and other curves in figure 2 at fixed values of ∂D/∂θ) caused
only by the Soret effect are of the order of 5% in comparison with the classical case
DT = 0. Taking into account possible variations in the temperature coefficient, we
conclude that changes attain 25%. In addition, figure 2 shows that positive/negative
values of DT increase/decrease the fraction of ϕ∗. To gain greater insight into why
the above statement is valid, let us consider to figure 3 and expression (1). Figure 3
shows that the impurity concentration σ decreases and the temperature θ increases
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with the spatial coordinate. This means that their gradients are negative and positive
respectively. In the case of DT < 0, the mass fluxes caused by the Soret effect and
normal diffusion are in one direction (see (1)), that is the mass output from the
two-phase zone becomes greater. This increases the temperature and decreases the
bulk fraction ϕ∗. In the case of DT > 0, the two fluxes act in opposite directions and,
as a consequence, the thermodiffusion assists the growth of the bulk fraction.

Note that the temperature in the mushy zone is also known (see (5)). Thus, the
steady-state solidification with thermodiffusion and temperature-dependent diffusivity
in the mushy zone is studied analytically. All characteristics of the process under
consideration obtained using expressions (16), (18), (22), (23) are plotted in figure 3.

4. Replacement of a mushy zone by a discontinuity surface
The solidification regime with a two-phase zone may be unstable to small morpho-

logical and dynamical perturbations (Anderson & Worster 1995, 1996; Alexandrov
2000). If this is the case, it is necessary to carry out an instability analysis of the above
solutions. This procedure is well-detailed for frontal models (Mullins & Sekerka 1964;
Wollkind & Segel 1970; Alexandrov 2004 for linear and Van Vaerenbergh et al. 1995,
1996, 2001 for nonlinear mass transfer). Therefore, let us consider a new model of
solidification with a quasi-equilibrium mushy zone. The key idea of this model is to
replace a mushy zone by a discontinuity surface between the solid and liquid phases.
The validity of such a replacement follows from the fact that the two-phase zone
width, as a rule, is much smaller than the domain of solidification. Distributions (20)
and (21) make it possible to calculate the step changes in thermodynamic quantities
and fluxes upon transition through the mushy region and to thus obtain a new
formulation of the problem of solidification with such a region.

Replacing the two-phase zone by the discontinuity surface (‘front’) ξ = Σ(τ ), we
have the equations of heat and mass transfer in the liquid and solid:

d2θl

dξ 2
= 0,

∂σl

∂τ
= − ∂

∂ξ
Jl, ξ > Σ(τ ), (24)

d2θs

dξ 2
= 0, ξ < Σ(τ ). (25)

These differential equations of the second kind include unknown functions θl =
θl(ξ, τ ), θs = θs(ξ, τ ), σl = σl(ξ, τ ). The discontinuity surface coordinate Σ(τ ) is un-
known too because this coordinate may be dependent on small morphological
perturbations arising from, for example, oscillations in the constitutional supercooling.
In order that the new model be correct seven boundary conditions are required, three
of which are conditions far from the ‘front’ (so, for example, temperature gradients
and solute concentration may by regarded as given far from the discontinuity surface).

Let us find the rest boundary conditions at the ‘front’. First, the temperature at the
mush/liqid boundary is equal to the phase transition temperature

θl = θ0 − mσl, ξ = Σ(τ ). (26)

Second, taking into consideration that θ = θ0 − mσ (or ∂θ/∂ξ = −m∂σ/∂ξ ) within the
mushy zone and ∂θ/∂ξ = ∂θl/∂ξ, ∂σ/∂ξ = ∂σl/∂ξ at the mush/liquid boundary, we
obtain the condition

∂θl

∂ξ
= −m

∂σl

∂ξ
, ξ = Σ(τ ). (27)
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Third, replacing us by dΣ/dτ , gl by dθl/dξ and gs by dθs/dξ , in accordance with
expression (19), we obtain

λs

dθs

dξ
− λl

dθl

dξ
= LV

dΣ

dτ
, ξ = Σ(τ ). (28)

Let us now deduce the last boundary condition at the discontinuity surface. For
this purpose, we calculate the jump in the solute concentration at ξ = Σ(τ ) by means
of expressions (20) and (21):

mσ∞(c|x=ε − c|x=0) = θs − θl

= mσ∞

(
1 +

(1 − mσ∞(∂D/∂θ)/D0)Gl

1 + bGl

− a(ϕ∗ + c2)/(NΛ(ϕ∗))

1 − k + b(ϕ∗ + c2)/(NΛ(ϕ∗))

)
. (29)

The jump in derivatives at the discontinuity surface is

dc

dx

∣∣∣∣
x=0

− dc

dx

∣∣∣∣
x=ε

=
1

mσ∞

[
dθl

dx
− dθs

dx

]
= Gl − ϕ∗ + c2

NΛ(ϕ∗)
.

We take the magnitude of (ϕ∗ + c2)/(NΛ(ϕ∗)) from the last equation, and substitute
the result in (29). Replacing gl by dθl/dξ , gs by dθs/dξ , d/dx by u−1

s D0 d/dξ and us

by dΣ/dτ again, we finally obtain

θs − θl − mσ∞ =
(D0 − mσ∞∂D/∂θ) ∂θl/∂ξ

dΣ/dτ + (∂D/∂θ + β1DT ) ∂θl/∂ξ

− (D0 − β0mDT )∂θs/∂ξ

(1 − k) dΣ/dτ − (∂D/∂θ + β1DT ) ∂θs/∂ξ
, ξ = Σ(τ ). (30)

This boundary condition and the above model are identical to the conditions obtained
by Alexandrov (2001) in the classical case: ∂D/∂θ = 0, β0 = 0 and β1 = 0. Thus, the
frontal model (24)–(28), (30) describing directional solidification with a mushy zone
is derived. This model allows an instability analysis to be carried out in the spirit of
Van Vaerenbergh et al. (1995, 1996, 2001).

5. Conclusion
Exact analytical solutions of the nonlinear model (1)–(11) describing directional

crystallization have been obtained. The thermodiffusion and temperature-dependent
diffusivity modifying the heat and mass transfer during the solidification were found
to be significant. The model under consideration demonstrates a complex behaviour
of the mushy zone thickness dependent on the temperature gradients and variations in
the diffusion coefficient (figure 1). The influence of the Soret effect on the crystallization
process is characterized by the sign of the thermodiffusion coefficient (figure 2). Thus,
the solidification under study is completely described by the analytical expressions
(16), (18)–(23), on the basis of which the new ‘frontal’ model of a mushy zone is
derived.
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